VERT: FILTER TESTING AND FURTHER EFFORTS TO MINIMIZE EMISSIONS

Dr. J. Czerwinski, AFHB Dr. A. Mayer, TTM

VERT Forum, EMPA, 15.03.2018

CONTENTS

- VERT DPF certification learned lessons
- VERTdePN & TeVeNO_x
- PN@RDE \rightarrow GPF
- NPTI
- VERTdeNO_x for passenger cars

VERT DPF certification

VERT – Project (1993 – 2000) <u>V</u>erbesserung der <u>E</u>missionen von <u>R</u>ealmaschinen in <u>T</u>unnelbau

Improvement of emissions of the real machines in tunnel construction.

Today (since 2008): <u>Verification of Emission Reduction Technology</u>

Objectives

- to diminish the emissions at the source
- to define the new limit values of emissions
- to find the methods and apparatus to control the machines in the field
- to confirm the feasibility of the particulate traps (PT) and regeneration systems in the field tests
- to give support to the users by introducing the PT-systems

Lessons from VFT Engine dynamometer

VFT ... VERT Filter Test

EQUIPMENT FOR NANOPARTICLE MEASUREMENTS

Bimodal particle distribution with FBC, with and without filter.

Filtration efficiency as a function of soot burden and pore size

AFHB

Bern University of Applied Sciences Biel-Bienne Switzerland AFHB | IC-Engines and Exhaust Gas Control

÷

VERT Particle Filter-Verification (all Systems after 1998) ISO 8178 Test-Cycle. Number by TD+SMPS+CPC. EC-Mass by Coulometry. PM as usual

REGENERATION OF DPF, 40 PPM FE

Lessons from Fieldtests (2000h)

LESSONS FROM FIELDTESTS (2000H)

- information, education & motivation of personnal
- datalogging (remote control)
- inspection & maintenance
- responsibilities: user, retrofitter, manufacturer of engine

Field Control

FIELD CONTROL WITH PN AND OPACITY

107 machines 2016-2017

Repartition between retrofit and OEM DPFs

Samples of each measurement types

COMPARISON NPET@HIGH IDLE ↔ **OPACITY**@FREE ACCELERATION

107 machines 2016-2017

Lessons from VSET

VSET ... VERT Secondary Emissions Test

Some substances or substance

constellations in the coatings can

cause increased production of PCDD/F

VERTdePN & TeVeNO_x

VERT ...

Verification of Emission Reduction Technology

dePN ... decontamination Particles & NO_X

VERTdePN Testing Procedure for DPF+SCR Combisystems Product Standard (DPF VERT certified)

Target: recommendation on the VERT-List

*) VPNT1 on HD chassis dyno only with special equipment in justified cases

Adaptation of the (DPF+SCR) system on the test bench

ENGINE MAP OF THE IVECO F1C AND 6-POINTS-TEST FOR DPF AND FOR SCR INVESTIGATIONS

TORQUE & SPEED IN ETC IVECO F1C

BAFU, ASTRA, SUVA AFHB, EMPA, UMTEC TTM, DINEX, HUG, HJS

ASTRA, BAFU, AFHB, EMPA, MAE, TTM

TEVENOX ...

- Testing of Vehicles with
- NOx-Reduction Systems

<u>3 Types of Vehicle Tests</u>

TEST TYPE 1

o HD Chassis Dynamometer

TEST TYPE 2

• Parcours on the Road (real world operation)

TEST TYPE 3

 Simple Function Test (short operation on the road)

+

Vehicle E on the MAN HD chassis dynamometer with OEM SCR & retrofitted DPF

retrofit system cDPF & SCR; $\alpha = 0.75$ vehicle A; ULSD; Chassis Dyno

General Conclusions

- The foundations for the quality verification procedures of SCR-systems are established,
- The SCR-systems are not active at lower temperatures < 200°C,
- SCR-testing on vehicle has more importance (than DPF-testing) and it is a simple & low-cost tool for quality check.

$\mathsf{PN}@\mathsf{RDE} \rightarrow \mathsf{GPF}$

JRC Round Robin with PN PEMS

31.8 km

24.4 km

33.6 km

89.9 km

53.2 min 19.8 min

18.7 min

7.7 min

99.4 min

35.8 km/h

74.1 km/h 108.1 km/h

119.6 km/h

AFHB, ROAD TRIP FOR RDE; VEHICLE 1, PEMS 4 & PN PEMS

Comparison PN-PEMS \leftrightarrow CPC (PMP) by WLTC warm.

vehicle 6; DOC; fuel: Diesel

SET-UP OF EXHAUST GAS SAMPLING FOR PN-ANALYSIS

PN MEASUREMENTS

Steady state (SSC) SMPS, nSMPS at tailpipe

Transient operation CPC in CVS tunnel

EXAMPLE OF PSD'S WITH SMPS & NSMPS AND PARTICLE COUNTS FILTRATION EFFICIENCY (PCFE) WITH V1, GPF 1 AT 95 KM/H

SAE 2017-01-1004

PCFE'S OF THE INVESTIGATED GPF'S IN WLTC HOT

CPC

Conclusions

- the PN-emission level of the investigated GDI cars in WLTC without GPF is in the same range of magnitude very near to the actual limit value of 6.0 x 10¹² #/km
- with the GPF's with better filtration quality it is possible to lower the emissions below the future limit value of 6.0 x 10¹¹#/km
- the filtration efficiency of GPF can attain 99% but it can also be optimized to lower values – in this respect the requirement of "best available technology for health protection" should be considered

NPTI new periodical technical inspection

INTERNATIONAL WORKING GROUP SINCE APRIL 2016

EC JRC, BAFU, ASTRA, METAS, TNO, VERT, TTM, Sen. Berlin, UBA, Bast, TSI, TESTO, AK Wien, FHNW, AFHB

You can join!!!

IUCD: exhaust emissions during const. speed and idling.

Vehicle 3; EGR, DOC, DPF, SCR; fuel: Diesel; tailpipe.

VERTdeNO_x for Diesel passenger cars

If public support ?

VERTdeNO_x Testing Procedures for HD/LD SCR-retrofit

Vehicle equipped with a VERT-conform DPF-system

Conclusions

- With DPF, SCR, GPF it is possible to:
 - Eliminate PN and
 - Reduce NO_x below the legal limits
- Quality control in-use is possible (for deNO_x PTI more effots are necessary)
- Quality procedures for new deNO_x systems for Pcars are elaborated.

