

© 2018, VERT

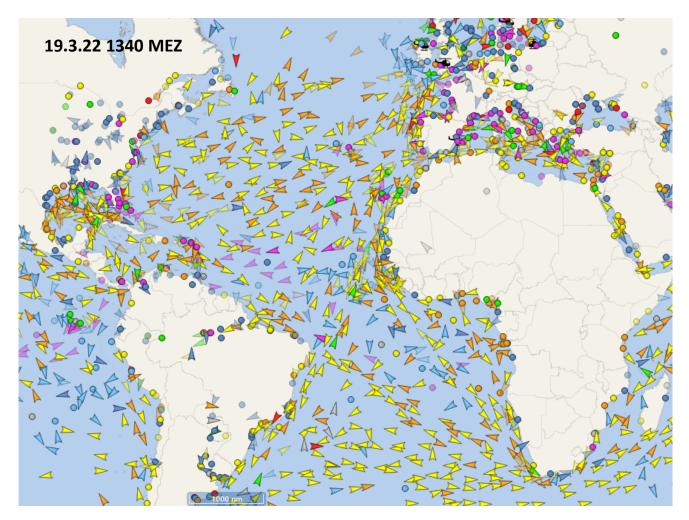
12th VERT Forum, March 24th 2022

VERT PROJECT

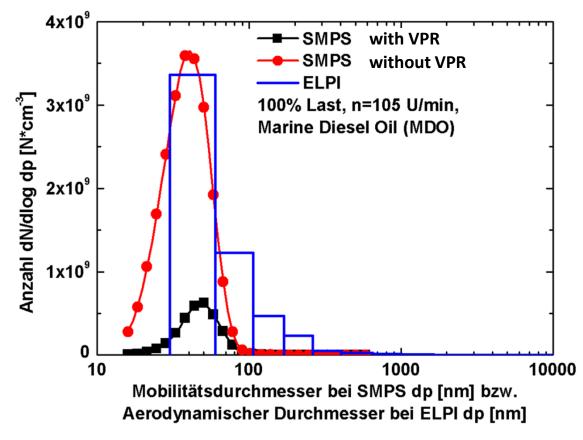
PARTICLE FILTER CONCEPT for HFO ENGINES

2019 - 2021

Thomas Lutz / Andreas Mayer


BACKGROUND and TARGET

- Marine contribution to global PM-burden (BC impact on the actic/global warming)
- Marine diesel fuel properties → *sulfur* and *ash*
- PM characteristics (e.g. high OC and SOF content)
- Standard wall flow DPF not feasable
- Filter cleaning and de-ashing in situ
- \rightarrow A membrane filter based concept

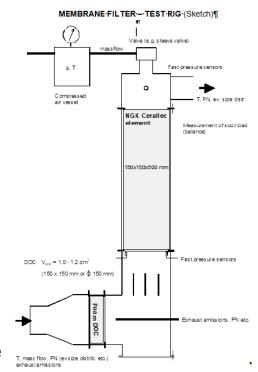


○ SHIP TRAFFIC ON THE ATLANTIC OCEAN

Source: KTI Project 4207.2 KTS

PARTICLE COMPOSITION

Source: KTI Project 4207.2 KTS



CONCEPT

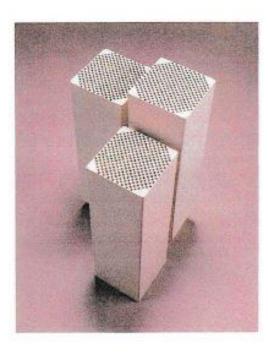
To cover the problems due to ash, sulfur, high OC, low T, low backpressure

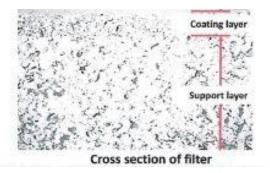
- Surface Filtration by ceramic membrane wall flow filter (for ash cleaning)
- Particle «drying» by OC catalysis on foam catalyst - electrically heated if needed (SiC)
- Periodical cleaning by compressed air from clean side
- During engine operation eventually with bypass
- Modular design to cover high exhaust volume flow
- DeNOx downstream not part of the project
- De-Sulfurization not part of the project

WHAT WAS THE TARGET?

To test the concept as realistic as possible on small scale but on real engines (4S & 2S) for different fuels to reach 99 % PN removal

- Diesel fuel with 1000 ppm Sulfur and 1:16 lubrication oil (*in Biel*)
- Heavy fuel oil HFO (high S and ash) at WinG&D (2S bypass);
- Alternative: FVTR Rostock (4S)

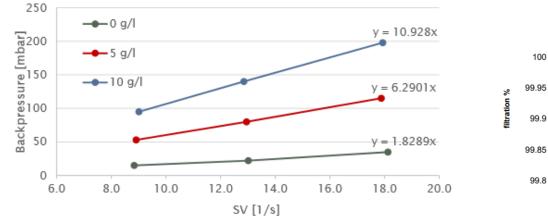

Source: BFH Biel/CH



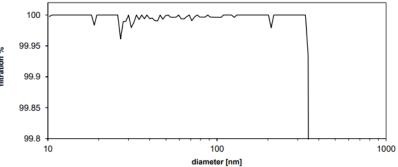
NGK MEMBRANE FILTER

Characteristics of ceramic filter

Material	Cordierite
Working temperature	Up to 900 °C
Dimensions	150 [□] × 500L
Cell pitch / Filtration area	4mm / 4.0m ² 6mm / 2.6m ²
Pore size (support layer) (coating layer)	Approx. 15µm Approx. 5µm
Porosity	45%
Coefficient of thermal expansion	1×10-6/°C



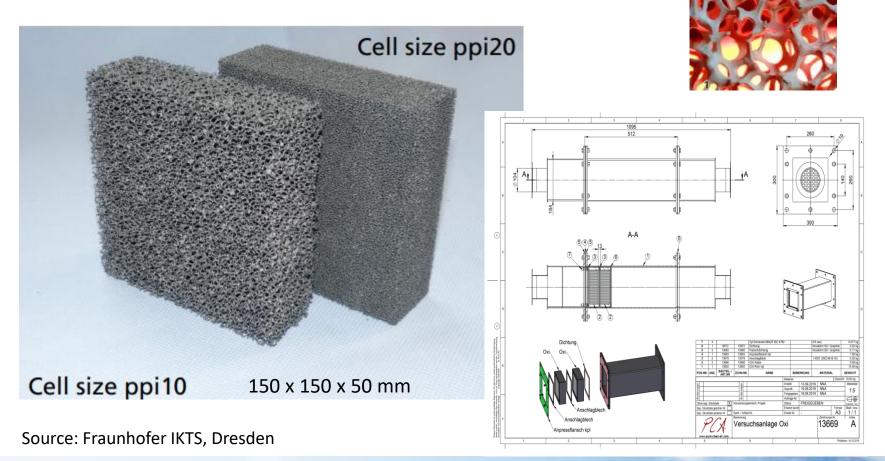
Source: NGK 2016



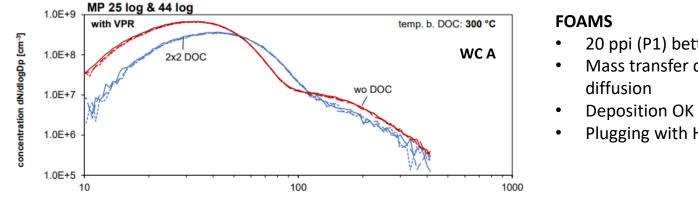
FILTER CHARACTERISTICS

Backpressure behavior after (partial) regeneration

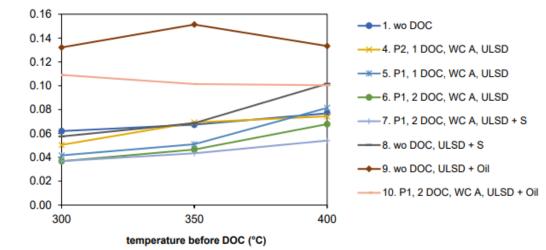
Filtration efficiency (of new and unloaded filter)


Source: Report 532a, BFH Biel/CH

OPEN FOAM DOC


Fraunhofer-Institut Dresden (foam)/Umicore (catalyst)

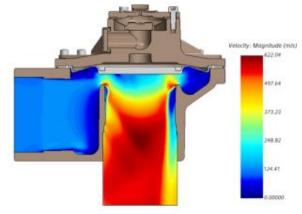
DOC EFFECTS (washcoats A and B)

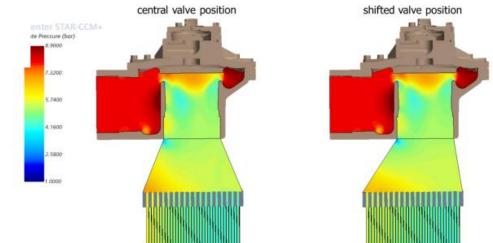


PM (g/kWh)

- 20 ppi (P1) better than 10 ppi (P2)
- Mass transfer dominated by
- Deposition OK for diesel fuel
- Plugging with HFO

Washcoat

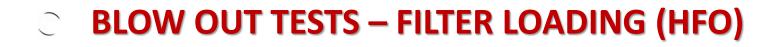

- WC A reaches 50-60% conversion of OC; no sensitivity to S
- WC B shows very little conversion **Spacial velocity**
- 2x2 units is not the optimum


Source: Report B532b, BFH, Biel/CH

BLOW OUT TESTS – FLOW SIMULATION

Optimization of the transition piece from the inlet valve to the filter housing

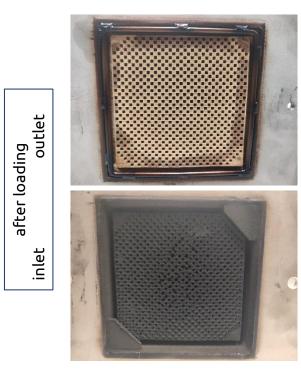
BLOW OUT TESTS – TEST FACILITY

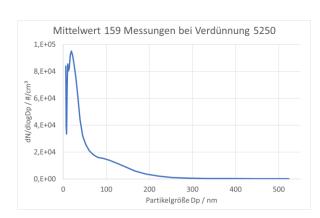


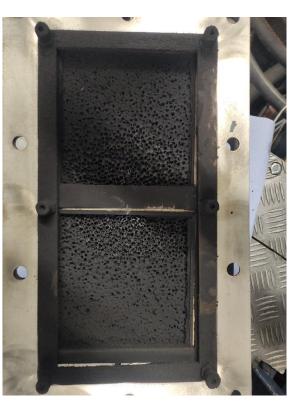
Norgren soot blower valve

Transition piece to the filter housing

Source: BFH Biel/CH






FILTER

PARTICLE SIZE DISTRIBUTION

DOC

SOURCE: Proj.Nr.21/06/05 – FVTR Rostock

BLOW OUT TESTS – CLEANING PROCESS

Test-Video (4 bar / 120 ms Valve Actuation Time)

BLOW OUT TESTS – FIRST RESULTS

Filter#	Catalytic Coating	Empty Filter Weight	Soot Type (Used Fuel)	ATS	Temp. bef. ATS During Loading	Soot Loaded Filter Weight	Soot Load	Blowing Pressure	1st Blow		η1	2 nd Blow	▽	n2	3 rd Blow	⊲	1) 3 3	η _{τοτ}	Test Valid
		g			deg. C.	g	g/l	bar	g	g		g	g		g	g			
3	no	21163.1	ULSD	-	≈ 250	21295.8	11.8	2	21197.1	98.7	74.4%	21193.4	3.7	2.8%	21191.8	1.6	1.2%	78.3%	yes
3	no	21163.7	ULSD+Oil	-	≈ 250	21291.9	11.4	2	21204.1	87.8	68.5%	-	-	-	-	-	-	-	yes
3	no	21162.8	ULSD	-	≈ 250	21292.2	11.5	4	-	-	-	-	-	-	21195.2	97	75.0%	75.0%	yes
6	yes	22127.0	ULSD	-	≈ 250	22227.1	8.9	4	-	-	-	-	-	-	-	-	-	-	no
5	yes	22563.1	ULSD	-	≈ 250	22661.0	8.7	4	-	-	-	-			22547.7	113.3	115.8%	115.8%	yes
4	no	21208.4	HFO	-	300	21531.3	28.7	4	21392.4	138.9	43.0%	-	-	-	21384.4	146.9	45.5%	88.5%	yes
1	no	20811.7	HFO	DOC	300	21048.8	21.1	4	-	-	-	-	-	-	20884.5	164.3	69.3%	69.3%	yes
2	no	20793.4	HFO	DOC	400	20871.4	6.9	4	-	-	-	-	-	-	20797.4	74	94.9%	94.9%	yes
	N		lter Volume uation Time]	·		<u>.</u>								•				

Abbreviations

- ATS After Treatment System
- DOC Diesel Oxidation Catalyst HFO Heavy Fuel Oil
- ULSD Ultra Low Sulfur Diesel

Source: BFH Biel/CH

NOT EXECUTED TASKS

- No multifilter-model was build and tested so we have no experimental input on upscaling
- Test at 2-stroke marine engine at WinG&D could not be performed because of organizational problems
- Test with HFO on a 4-stroke engine can not fully replace the 2-stroke operation
- Regeneration under engine running conditions was not performed either
- Number of loading/cleaning repetitions is to small

PROVE OF THE CONCEPT

- The overall concept has been proven to be viable and feasable in principle
- The ceramic membrane wall flow filter is the most suitable solution for this application to work at low temperature with low backpressure
- OC elimination by catalysis to counteract filter plugging works but needs improvement
- Pulse cleaning works well but might need a more sophisticated valve and flow distribution design
- System proved insensitive to increased sulfur and oil ash

PARTNERS

- Main financial Support
 - FEDERAL OFFICE FOR THE ENVIRONMENT (FOEN)
- Research Partners
 - BFH (testing)
 - Combustion and flow solutions GmbH *(simulation of the pulse cleaning concept)*
- Industrial Partners
 - NGK (filter)
 - LIEBHERR
 - WIN G&D

- UMICORE (coating)
- Fraunhofer Institut (foam catalysts)
- Pure Clean Air (canning)
- Project Management: A. Mayer, Th. Lutz

Towards a blue sky and blue water

Thank you for your attention

