

12th VERT FORUM 2022

Moving Targets in Nanoparticle Abatement

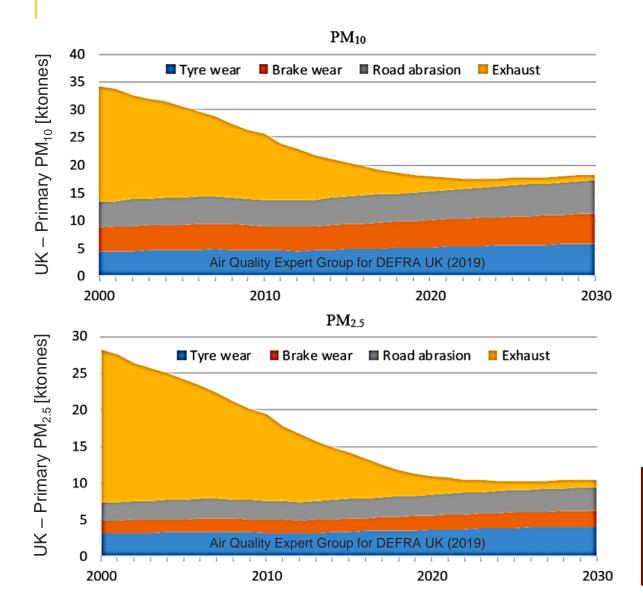
Brake Wear Particle Emissions Current State of Play and Future Outlook

Theo GRIGORATOS & Barouch GIECHASKIEL

24 MARCH 2022

✓ Short background on brake emissions

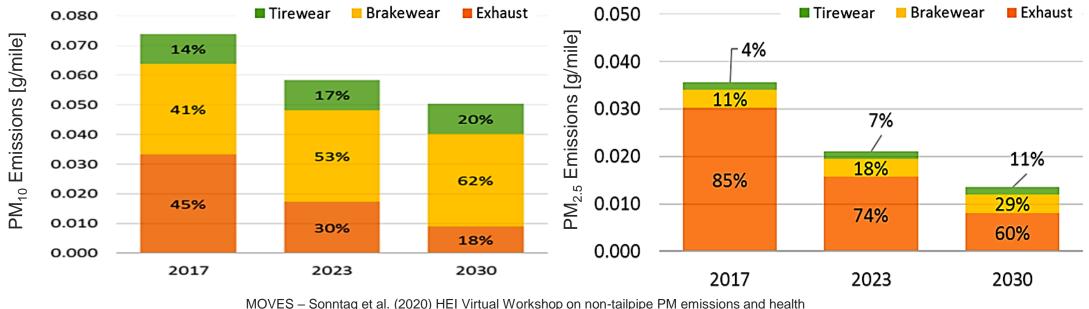
✓ Literature based LDVs brake PM EFs


✓ Development of a GTR on brake emissions

✓ Preliminary PMP-based findings

✓ Options to reduce brake emissions

EXHAUST VS. NON-EXHAUST EMISSIONS



Main limitations

- ✓ PM₁₀ and PM_{2.5} emission estimations are based on type-approval tests. Real-world exhaust PM emissions are expected to be higher – Data better reflect the situation in countries with newer fleet composition
- Question regarding the underlying assumptions – There is a lack of standardized methods for characterizing non-exhaust emissions
- Question regarding to what extent the influence of the fleet electrification has been considered adequately in these studies

Despite the limitations – and the reported differences among studies – non-exhaust emissions have become much relevant for air pollution

IMPORTANCE OF BRAKE EMISSIONS



MOVES – Sonntag et al. (2020) HET Virtual Workshop on non-talipipe PM emissions and health

- ✓ Brake PM₁₀ and PM_{2.5} EFs are approximately 3 times higher compared to tire PM₁₀ and PM_{2.5} (road wear not included)
- ✓ Projections show similar brake/tire EFs ratio in 2030; however, calculations do not seem to take into account the electrification of fleet that will heavily affect all types of non-exhaust emissions

Despite the questionable projections – which do not seem to account for future technologies – brake emissions make up a significant fraction of non-exhaust emissions

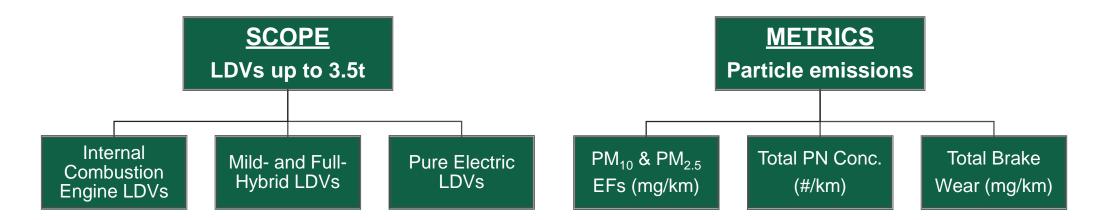
LDV BRAKE EMISSION FACTORS – LEGACY

MOVES - Sonntag et al. (2020) - HEI Workshop

Limitations

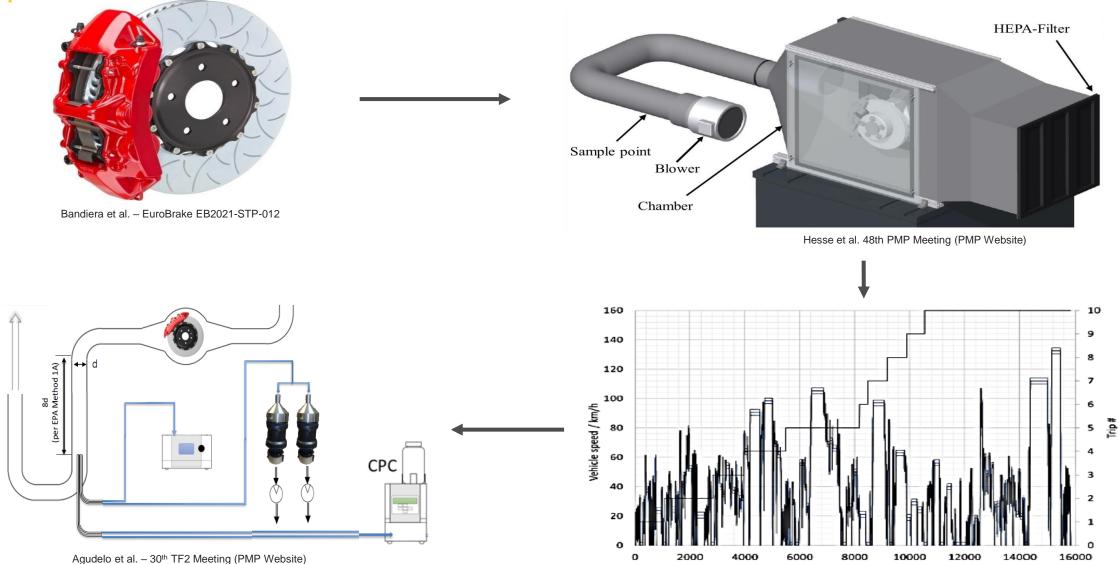
1. Emission Inventories – Require accurate emission rate input data and – so far – do not take into account differences and technologies

2. Receptor Modelling – Requires the application of unique chemical tracers that seem not to be available in case of brake emissions


3. Brake dynamometer – No standardized or commonly accepted method available, yet

4. On-road measurement – Very challenging to isolate brake (or other non-exhaust) emissions

Real-world LDV Brake PM_{10} EFs at a vehicle level can vary as much as from a few to tens of mg/km. The most important influencing factors are: The vehicle technology, vehicle type and curb weight, the type of brake, the brake quality and materials, the brake size, etc.


UNECE GRPE MANDATE – GTR DEVELOPMENT

- ✓ June 2013: The PMP IWG started looking into non-exhaust emissions following a request from the Russian federation – DG-GROW requested to research also other non-exhaust sources
- ✓ June 2019: The GRPE approves the ToR mandating the PMP IWG to develop a laboratory based method for sampling and measuring brake particle emissions
- ✓ June 2021: The GRPE approves the ToR mandating the PMP IWG to develop a Global Technical Regulation (GTR) on brake particle emissions

The GTR is expected to be adopted in the Euro-7 Standards regulation where emission limits for LDV brakes will be defined for the first time – Possible adoption in other parts of the world

PMP METHOD – AT A GLANCE

Elapsed time (intermediate soaks will vary) / s

PMP METHOD – VALIDATION – ILS EXERCISE

- ✓ Verify the feasibility of the proposed specifications and provide recommendations on further improving and/or extending the set of the defined specifications;
- Examine the repeatability and reproducibility of PM and PN emission measurements with the application of the proposed specifications;

Mandatory /Optional	M1 - Br1a	M2 - Br1b	M3 - Br2	O1 - Br3	O2 - Br4	O3 - Br5a	O4 - Br5b	O5 - Repeatability	O6 - Alt. Bedding	
Lab-B	V	V	V	V				٧	V	
Lab-C	V	٧	V	V						
Lab-D	V	V	V		V					
Lab-F	V	٧	V	V	V	V	V			
Lab-G	V	V	\checkmark			V	V			
Lab-H	V	٧	V							75
Lab-J	V	V	V							
Lab-K	V	V	V					V		Completed
Lab-L	V	V	V	V				V	V	tests
Lab-M	V	V	V	V	V	V	V	V		
Lab-N	V	V		V	V	V	V		V	89%
Lab-P	V	\checkmark	\checkmark							
Lab-Q	V	V	V					V		
Lab-R	V	\checkmark	V							
Lab-S	V	٧	V	V						
Lab-T	V	V	V		V					
Lab-X	V	V	V			V	V			

Not Completed

Completed

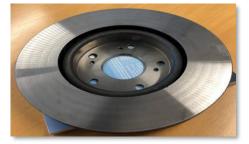
BRAKE PM EFs – PRELIMINARY FINDINGS

- ✓ The measurement variability for PM₁₀ and PM_{2.5} is high when all data are considered. However, some Labs experienced significant issues, while others did not meet important specs of the TF2 protocol;
- ✓ There is a need to appropriately filter the data in order to allow for a robust statistical analysis and enable the identification of possible significant correlations in the remaining dataset;
- ✓ PM_{2.5} is approximately a third of PM₁₀ emissions regardless the type of brake tested Additionally, PM₁₀ emission levels are approximately 40-50% of total wear emissions regardless the type of brake
- ✓ The tested drum brake emits significantly lower PM₁₀ and PM_{2.5} compared to its conventional counterparts Additionally, PM emissions from the NAO pads are much lower compared to typical European ECE pads
- ✓ Total PN emission levels seem to be low compared to existing exhaust limit for solid particles An unfiltered average of 8x10⁹ #/km per brake was calculated; however, certain labs exhibited very high background concentrations

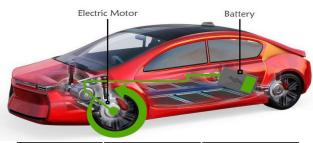
OPTIONS FOR REDUCING BRAKE EMISSIONS

Regenerative Braking

(Picture taken from circuitdigest.com)


Friction Materials – LS vs. NAO

(Sin et al. - EuroBrake EB2021-EBS-012)



PM reduction	Cost-	Market	
potential	effectiveness	readiness	
+++	++	+++	

PM reduction potential	Cost- effectiveness	Market readiness
+++	+	+

Brake Disk Coating (Eibl et al. – EuroBrake EB2021-MDS-003)

PM reduction potential	Cost- effectiveness	Market readiness	
+++	++	+++	

Options for reducing brake emissions

PM reduction potential	Cost- effectiveness	Market readiness		
++	++	+++		

(Sin et al. – EuroBrake EB2021-EBS-012)

PM reduction		Market	
potential	effectiveness	readiness	
+++	+++	+++	

PM reduction potential	Cost- effectiveness	Market readiness	
++	++	+	

Brake Filters (Sin et al. – EuroBrake EB2021-EBS-012)

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

